An Update on the Physiology of Mild Traumatic Brain Injury

Barry Willer PhD
Grand Rounds
Psychiatry 2017
Disclosures

The Buffalo Sabres Foundation
Robert Rich Family Foundation
PUCCS Foundation
NFL Charities
Ralph and Mary Wilson Fund
NIH (1 R01 NS094444-01A1)
Change in Perspective of Concussion (and mTBI)

• Concussion has generally been perceived of as a problem of cognition
 – Hence the emphasis on neuropsychological testing (e.g. ImPACT)
 – And an emphasis on symptoms (self report)
 – Until recently the Treatment as Usual (TAU) has been rest and isolation
Purpose

• To present information on concussion as a problem with physiology (with psychosocial implications)
 – Concussion is perceived as a “medical” condition with psychological and social factors
 – Physical signs are emphasized (in addition to symptoms)
 – Physiologic research translates to assessment, diagnosis and treatment
 – Treatment is proactive and evidence based
Consensus guidelines for return to play

• Based largely on the observation of exercise intolerance
• We developed the Buffalo Concussion Treadmill Test to systematically assess exercise intolerance
• Exercise intolerance is a problem of ANS disruption
Animal research described the Metabolic Cascade and Physiologic Changes.
Concussion produces alterations in the ANS

- Dysregulation of CBF
 - Decreased at rest
 - Increased during exercise
- Higher resting HR at rest
- Decreased HRV at rest
- Decreased HR during exercise
 - Sympathetic at rest (Difficulty attaining a parasympathetic state)
 - Parasympathetic influence during exercise
Cardiovascular Dysfunction during Exercise in Adolescents
5 days after SRC (Acute) and at 14 days (Recovered), (N=27)

For both HR and RPE, time and group were significant (p<0.05) and a group-time interaction effect was significant for RPE (p<0.05)
UB Data on ANS function in College athletes within 1 week of SRC
10 concussed v. 10 HC after Cold Water Immersion- Blair Johnson PhD
Patients with Concussion

- At rest, higher than normal HR, decreased HRV, decreased CBF, evidence of orthostatic imbalance
- Unable to achieve a true sympathetic response during exercise (e.g. inadequate HR, reduced cardiac output, poor regulation of CBF)
- Unable to achieve a true parasympathetic response during rest (increased HRV)
Autonomic Nervous System

SYMPATHETIC

- Dilates Pupils
- Inhibits Salivation
- Bronchial Dilation
- Inhibits Digestion
- Stimulates Glucose Release by Liver
- Stimulates Epinephrine & Norepinephrine Release
- Relaxes Bladder
- Contracts Rectum
- Orgasm
- Ejaculation

PARASYMPATHETIC

- Pupils
- Stimulates Salivation
- Bronchial Constriction
- Stimulates Digestion
- Stimulates Gallbladder
- Contracts Bladder
- Relaxes Rectum
- Vaginal Lubrication
- Erection

Flight or Fight
Rest and Digest
Sympathetic

Fight or flight

- Quick response system (not intended for long periods)
- Characterized by increased HR and decreased HRV
- Pupil dilation

Experienced by the individual

- Disconcerting
- Anxious (over time anxiety morphs into depression)
- Light and sound sensitivity
- Dizziness
- *Exercise intolerance*
Parasympathetic

Rest and Digest
- Increased blood flow to internal organs
- Contraction of ciliary muscles facilitating accommodation
- Modulation of vital functions to achieve homeostasis

How patient feels
- Difficulty achieving a restful state
- Difficulty going to and staying asleep
- Nausea
- Irritable bowel
- Loss of appetite
- Difficulty with close vision
Other conditions that have ANS dysfunction:

- Parkinson’s disease
- Multiple system atrophy
- Postural orthostatic tachycardia syndrome
- Multiple Sclerosis
- Jet Lag and Space flight
CBF Regulation

• Assessed using Transcranial Doppler (TCD)
• Tilt table raises feet 6” (6 degrees)
• Initially there is increased profusion but the ANS adjusts in seconds...in controls.
Imaging of CBF Regulation

- Had to build a table that could be tilted 6” while the subject was in the imager. Can’t included any metal. Head must remain motionless.
Implications for Assessment

Physical Exam:
- Neck
- Eyes
- Vestibular function
- Orthostasis
Physical Examination within first week after Concussion
(% with abnormal physical signs, n=54)

Visit #1

<table>
<thead>
<tr>
<th>Physical Exam Signs</th>
<th>Recovered</th>
<th>Not Recovered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neck spasm</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>Neck tenderness</td>
<td>21</td>
<td>27</td>
</tr>
<tr>
<td>Neck ROM</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>Smooth pursuits</td>
<td>55</td>
<td>64</td>
</tr>
<tr>
<td>Convergence</td>
<td>43</td>
<td>73</td>
</tr>
<tr>
<td>Nystagmus</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Saccades</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>VOR</td>
<td>18</td>
<td>29</td>
</tr>
<tr>
<td>VOR dizziness</td>
<td>18</td>
<td>28</td>
</tr>
<tr>
<td>Tandem gait</td>
<td>54</td>
<td>33</td>
</tr>
<tr>
<td>Romberg</td>
<td>18</td>
<td>27</td>
</tr>
</tbody>
</table>

Recovered n=43. Not recovered n=11. Control n=30
Physical Exam

- Excellent for diagnosis
- Not predictive of recovery time
- Excellent for determination of recovery
Exercise (In)Tolerance

• Buffalo Concussion Treadmill Test
• Also have a protocol for an exercise bike
• Key outcome: Heart Rate when patient is unable to continue due to symptoms
Physiological Model improves differential diagnosis

- Physical exam derived from research on physiological changes
 - Exercise intolerance
 - Orthostatic imbalance
 - ANS disturbance

- Patients who are exercise tolerant may have related condition
 - Cervicogenic
 - Oculomotor
 - Vestibular
Differential Diagnosis of Post Concussion Disorders

- CVO (22) 55%
- PCS (22) 20%
- Resolved (19) 15%
- Anxiety (20) 5%
- Migraine (15) 5%
Physiological Approach improves Prognostication
RCT of Exercise versus Stretching

Days to Recovery

- **TAU (Rest)**
- **Stretching**
- **Aerobic Exercise**
ANS Recovery

• In case of concussion, ANS expect spontaneous recovery in 85% of cases.
• Exercise speeds recovery for those that would recover spontaneously.
• Exercise reduces the number of patients with protracted recovery.
A Complete Approach to Treatment

• Sub-Threshold exercise
 – Other interventions that address ANS imbalance

• Treating COV deficits
 – Vestibular
 – Oculomotor
 – Cervicogenic

COV issues recover faster if there is coincident ANS recovery
Exercise Script Must Be Individualized and Must Be Sub-Threshold

• 10% below threshold
• 20 minutes a day
• Don’t exercise on “bad” days
• Stop if you feel symptoms
Why (How) Does Exercise Do Its Magic?

• Most of what we know is from Animal studies:
 – Increases available BDNF, HGF, general endocrine function, wakefulness/sleep cycle, energy metabolism
 – Inhibits apoptosis
 – Promotes angiogenesis particularly in the hippocampus
 – Improves CBF in response to cognitive demands
 – Improves inflammatory response
 – Improves white matter integrity
When and How Much Exercise
Is Exercise the Only Answer?

• Anything that improves an individual’s control of the ANS should be beneficial:
 – Yoga; Meditation; Good sleep/wake cycle, bio-feedback
 – Especially useful for older patients or patients who do not want to exercise
What About Cognitive Interventions

- Absolutely Essential
 - For Patients With Pre-existing cognitive deficits
- For patients with prolonged recovery
 - Generally struggle with cognitive intolerance (fatigue)
 - Assisting with adjustment issues
Definition of Recovery

• Asymptomatic
• Negative physical exam
• Exercise tolerant (BCTT)
• Cognitive tolerant?
Questions